ALOHA Use cases

Deep Learning (DL) algorithms are an extremely promising instrument in artificial intelligence. To foster their adoption in new applications and markets, a step forward is needed towards the implementation of DL inference on low-power embedded systems, enabling a shift to the edge computing paradigm. The main goal of ALOHA is to facilitate implementation of DL algorithms on heterogeneous low-energy computing platforms providing automation for optimal algorithm selection, resource allocation and deployment.

Speech recognition in smart industry

This scenario refers to Smart Industry, where Deep Learning is used for speech recognition. The objective of this use case is to develop an embedded speech recognition system that would activate/deactivate PLC-controlled tooling machinery or collaborative robot in an industrial environment, without relying on a cloud backend.

Speech recognition in smart industry 

This scenario refers to Smart Industry, where Deep Learning is used for speech recognition. The objective of this use case is to develop an embedded speech recognition system that would activate/deactivate PLC-controlled tooling machinery or collaborative robot in an industrial environment, without relying on a cloud backend.

Speech recognition in smart industry

This scenario refers to Smart Industry, where Deep Learning is used for speech recognition. The objective of this use case is to develop an embedded speech recognition system that would activate/deactivate PLC-controlled tooling machinery or collaborative robot in an industrial environment, without relying on a cloud backend.

Das ist eine Überschrift

Deep Learning (DL) algorithms are an extremely promising instrument in artificial intelligence. To foster their adoption in new applications and markets, a step forward is needed towards the implementation of DL inference on low-power embedded systems, enabling a shift to the edge computing paradigm. The main goal of ALOHA is to facilitate implementation of DL algorithms on heterogeneous low-energy computing platforms providing automation for optimal algorithm selection, resource allocation and deployment.

 

  • Excepteur sint occaecaat cupidatat non
  • Excepteur sint occaecaat cupidatat non
  • Excepteur sint occaecaat cupidatat non
  • Excepteur sint occaecaat cupidatat non
Button

Architecture-awareness

The features of the architecture that will execute the inference are taken into account during the whole development process, starting from the early stages such as pre-training hyperparameter optimization and algorithm configuration.

Adaptivity

The development process considers that the system should adapt to different operating modes at runtime.

Security

The development process automates the introduction of algorithm features and programming techniques improving the resilience of the system to attacks.

Das ist eine Überschrift

Excepteur sint occaecat cupidaatat non

Deep Learning (DL) algorithms are an extremely promising instrument in artificial intelligence. To foster their adoption in new applications and markets, a step forward is needed towards the implementation of DL inference on low-power embedded systems, enabling a shift to the edge computing paradigm. The main goal of ALOHA is to facilitate implementation of DL algorithms on heterogeneous low-energy computing platforms providing automation for optimal algorithm selection, resource allocation and deployment.

Unsere Partner

Das ist ein Element für eine Aufstellung aller Logos der Partner und Förderer.

Lorem ipsum

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

Lorem ipsum

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

Lorem ipsum

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.